Categorical Formulation of Finite-dimensional C*-algebras
نویسنده
چکیده
We develop the concept of an involution monoid, and use it to show that finite-dimensional C*-algebras are the same as special unitary †-Frobenius monoids in the category of finite-dimensional complex Hilbert spaces. This gives a new, geometrical definition of finite-dimensional C*-algebras, contrasting with the conventional algebraic one.
منابع مشابه
Categorical formulation of quantum algebras
We describe how †-Frobenius monoids give the correct categorical description of two kinds of finite-dimensional ‘quantum algebras’. We develop the concept of an involution monoid, and use it to show that finite-dimensional C*-algebras are the same as special unitary †-Frobenius monoids in the category of finite-dimensional complex Hilbert spaces. The spectral theorems for commutative C*-algebra...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملH*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics
A certain class of Frobenius algebras has been used to characterize orthonormal bases and observables on finite-dimensional Hilbert spaces. The presence of units in these algebras means that they can only be realized finite-dimensionally. We seek a suitable generalization, which will allow arbitrary bases and observables to be described within categorical axiomatizations of quantum mechanics. W...
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 270 شماره
صفحات -
تاریخ انتشار 2011